ОПИСАНИЕ ТИПА СРЕДСТВ ИЗМЕРЕНИЙ

СОГЛАСОВАНО
Руковолитель ГЦИ СИ —
Зам. Генерального директора
ГУ «Ростест - Москва»

Еврокимов А.С.
2009 г.

Генераторы сигналов высокочастотные	Внесены в Государственный
R&S SMC100A	реестр средств измерений Регистрационный номер 40991-09 Взамен №

Выпускаются по технической документации фирмы «Rohde & Schwarz GmbH & Co. KG», Германия.

НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Генераторы сигналов высокочастотные R&S SMC100A (далее по тексту - генераторы) предназначены для генерирования немодулированных электромагнитных колебаний и электромагнитных колебаний с различными видами модуляции в диапазоне частот от 9 к Γ ц до 3.2 Γ Γ μ .

Генераторы применяются при разработке, производстве и эксплуатации радиоэлектронных устройств.

ОПИСАНИЕ

Принцип работы генераторов основан на формировании в приборе базового диапазона частот синтезатором высокой частоты и расширением его вниз и вверх в устройстве формирования выходного сигнала. Источником опорной частоты для синтезатора высокой частоты служит кварцевый генератор частотой 10 МГц.

Управление режимами работы и процессом формирования выходного сигнала осуществляется внутренней микро-ЭВМ, выбор режимов осуществляется кнопками на передней панели или в режиме дистанционного управления. На передней панели расположены также индикатор, коаксиальный выходной ВЧ разъем (розетка тип N) и гнезда ВNС для входа внешнего модулирующего сигнала и выхода внутреннего модулирующего сигнала. На задней панели расположены выходы интерфейсов LAN, USB, GPIB, разъем питания, гнезда ВNС входа и выхода опорной частоты, а также вход для внешнего и выход для внутреннего импульсных модулирующих сигналов.

В генераторах предусмотрены возможности функционирования режимов модуляции АМ, ЧМ, ФМ и ИМ.

ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Частотные параметры

Диапазон частот	Опция SMC-B101	от 9 кГц до 1,1 ГГц
	Опция SMC-B103	от 9 кГц до 3,2 ГГц
Дискретность установки час	тоты	0,001 Гц
Пределы допускаемой	Штатно	$\pm 1 \times 10^{-6}$
относительной погрешно-	Опция SMC-B1	$\pm 1 \times 10^{-7}$
сти установки частоты δf		

Параметры уровня выходного сигнала

Диапазон установки значений уровня выходного сигна-	(от минус 120 до +13) дБмВт	
ла на нагрузке 50 Ом	для 200 кГц < f < 3,2 ГГц	
Дискретность установки уровня выходного сигнала	0,01 дБ	
Пределы допускаемой абсолютной погрешности установки уровня	± 0,9 дБ	
Предел допускаемого значения КСВН выхода ВЧ	1,8; волновое сопротивление 50 Ом	

Параметры спектра выходного сигнала в режиме непрерывных колебаний

·- • • • • • • • • • • • • • • • • • • •	,
Уровень гармонических составляющих	≤ минус 30 дБн
	для f > 1 МГц, уровень< 8 дБмВт
Уровень негармонических составляющих	≤ минус 60 дБн для f ≤ 1600 МГц
	≤минус 54 дБн для f> 1600 МГц
Спектральная плотность мощности фазовых шумов при	≤ минус 105 дБн/Гц на 1 ГГц
отстройке 20 кГц	≤ минус 99 дБн/Гц на 2 ГГц
	≤ минус 95 дБн/Гц на 3,2 ГГц
Паразитная девиация частоты на частоте 1 ГГц	≤9 Гц
Паразитная амплитудная модуляция	≤ 0,02 %

Параметры выходного сигнала в режиме модуляции

Диапазон установки девиации частоты	
при f < 23,4375 МГц;	от 0 до 500 кГц
при 23,4375 МГц < f <i>≤</i> 25 МГц	от 0 до 31,25 кГц
при 25 МГц < f ≤50 МГц	от 0 до 62,5 кГц
при 50 МГц < f ≤100 МГц	от 0 до 125 кГц
при 100 МГц < f ≤200 МГц	от 0 до 250 кГц
при 200 МГц < f ≤400 МГц	от 0 до 500 кГц
при 400 МГц < f ≤800 МГц	от 0 до 1 МГц
при 800 МГц < f ≤1,6 ГГц	от 0 до 2 МГц
при 1,6 ГГц < f ≤3,2 ГГц	от 0 до 4 МГц
Дискретность установки девиации частоты	от 10 Гц
Пределы допускаемой абсолютной погрешности установ частоты Fд при модулирующей частоте 1 кГц	вки девиации $\pm (0.04 \times \text{Fд} + 20 \Gamma \text{ц})$
Коэффициент гармоник огибающей в режиме ЧМ при мод частоте 1 кГц	цулирующей < 0,2 %
Диапазон модулирующих частот для ЧМ	от 10 Гц до 100 кГц
Диапазон установки коэффициента АМ	(0-100)%
Дискретность установки коэффициента АМ	1%

Пределы допускаемой абсолютной погрешности установки коэффициента амплитудной модуляции М	f ≤23,4375 МГц	$\pm (0.01 \times M + 1\%)$
при модулирующей частоте 1 к Γ ц и $M < 80\%$	f > 23,4375 МГц	$\pm (0.04 \times M + 1\%)$
Коэффициент гармоник огибающей в режиме AM при глубине модуляции 30% и модулирующей	f ≤23,4375 МГц	не более 1 %
частоте 1 кГц	f > 23,4375 МГц	не более 3 %
Диапазон модулирующих частот для АМ		от 10 Гц до 50 кГц
Диапазон частот следования импульсов в режиме ИМ		от 0 до 500 кГц
Время нарастания/спада радиоимпульса		не более 500 нс
Коэффициент подавления сигнала несущей в паузе между радиоимприльсами		> 80 дБ

Параметры внутренних модулирующих генераторов

от 0,1 Гц до 100 кГц
0,1 Гц
± (δf х fмод +0,005 Гц)
Не более 1 %
от 10 мВ до 2,55 В
10 мВ
$\pm (0.02 \text{ x U} + 10 \text{ mB})$
от 2 мкс до 85 с
от 1 мкс до 1 с
от 100 не до1 с
100 нс

Питание генераторов

Напряжение и частота питающей сети		(230+23) B: (50+0.5) Fr
	Потребляемая мощность	Не более 100 Вт

Условия эксплуатации и массогабаритные характеристики

Ребенти эксплуатации и масс	
Рабочие условия применения	Температура: $(0 - +55)$ ⁰ C
	Относительная влажность воздуха: 30-80 %
	при +25 ⁰ C
Хранение/транспортирование	Температура: $(-40 - +71)$ 0 C
	Относительная влажность воздуха: не более 70 % при температуре $+ 35$ 0 C
Масса, не более	3,9 кг
Геометрические размеры	236 mm × 112 mm × 368 mm
(ширина×высота×глубина)	
Время прогрева	15 мин

ЗНАК УТВЕРЖДЕНИЯ ТИПА

Знак утверждения типа наносится на титульный лист руководства по эксплуатации и лицевую панель прибора типографским способом или специальным штампом.

комплектность

Наименование	Количество
Генератор сигналов высокочастотный R&S SMC100A	в соответствии с заказом
с опцией SMC-B101 или с опцией SMC-B103	
Опция SMC-B1- опорный термостатированный кварцевый генератор	в соответствии с заказом
Опция SMC-K4 – интерфейс GPIB / КОП (по шине IEEE-488)	в соответствии с заказом
Кабель питания	1
Методика поверки	1
Руководство по эксплуатации	1
Упаковочная тара	1

ПОВЕРКА

Поверка генераторов сигналов высокочастотных R&S SMC100A проводится в соответствии с документом «Генераторы сигналов высокочастотные R&S SMC100A Методика поверки МП РТ 1404-2009, утверждённой ГЦИ СИ ФГУ "Ростест-Москва" в июне 2009 года и входящим в комплект поставки.

В перечень оборудования, необходимого для поверки генератора, входят:

Стандарт частоты Ч1-50

сигнал частотой 5 МГц; $\delta F \leq \pm 1 \times 10^{-10}$ за 1 год

Частотомер электронно-счетный вычислительный Ч3-64 с блоком сменным Я3Ч-175 диапазон частот 0,005 Γ ц -18 Γ Γ ц $\delta_{\rm f,T} \le \pm 5 \cdot 10^{-7} + 10^{-9} / \tau_{\rm счета}$

Ваттметр поглощаемой мощности М3-54

диапазон частот (0-17,85) ГГц; пределы измерения $(10^{-4}-1)$ Вт; погрешность измерения мощности $\leq \pm 4$ % в диапазоне частот (0-12) ГГц

Анализатор спектра R&S FSU3

диапазон частот 20 Γ ц – 3,6 Γ Γ ц; пределы измерения мощности (минус 150 – +30) дБмВт нелинейность шкалы с погрешностью $\leq \pm$ 0,1 дБ в диапазоне (0 - 70) дБ

Измеритель модуляции вычислительный СК3-45

диапазон частот (0,1-1000) МГц; предел измерения коэффициента АМ (0,1-100)%; предел измерения девиации частоты 1Γ ц -1МГц;

погрешность измерения коэффициента $AM \le \pm 2$ %; девиации частоты $\le \pm 2$ %

Измеритель нелинейных искажений автоматический С6-11

диапазон частот 20 Γ ц -199,9 к Γ ц; пределы измерения (0,03-30) % погрешность измерения $\leq \pm (0,05\text{K}+0,02)$ % в диапазоне частот 199,9 Γ ц -19,9 к Γ ц,

Вольтметр универсальный В7-78/1

диапазон частот 3 Γ ц – 300 к Γ ц; пределы измерения 0,1 мB – 750 В

 $\delta U_{\sim} \leq \pm \ 0.1\%$ в диапазоне частот $10\ \Gamma \mu - 20\ \kappa \Gamma \mu$

Анализатор электрических цепей векторный /Анализатор спектра ZVL6 диапазон частот 9 к Γ ц – 6 Γ Γ ц; пределы измерения КСВН 1,03 – 10

погрешность измерения КСВН ≤ ± 5 %

Осциллограф цифровой запоминающий WS 452 полоса пропускания 500 МГц; коэффициент отклонения K от 1мв/Дел до 10 В/Дел погрешность измерения напряжения $\leq \pm (1.5 \times 10^{-2} \times \text{U} + 0.5 \times 10^{-2} \times 8 \times \text{K})$ диапазон измерения временных интервалов T 10 нс -10 с погрешность измерения временных интервалов $\leq \pm (0.06 \times 10 \times \text{K}_p/\text{K}_t + 10 \times 10^{-6} \times \text{T}_{изм})$

Межповерочный интервал – 1 год.

НОРМАТИВНЫЕ И ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

- 1. ГОСТ 22261-94 "Средства измерений электрических и магнитных величин. Общие технические условия".
- 2. Техническая документация фирмы "Rohde & Schwarz GmbH & Co. KG", Германия.

ЗАКЛЮЧЕНИЕ

Тип генераторов сигналов высокочастотных R&S SMC100A утвержден с техническими и метрологическими характеристиками, приведенными в настоящем описании типа, и метрологически обеспечен в эксплуатации.

ИЗГОТОВИТЕЛЬ

Myzyn

Фирма "Rohde & Schwarz GmbH & Co. KG", Германия.

Представительство в России: 109017 Москва, 1-й Казачий пер., 7.

Тел.: (495) 981-3560. Факс: (495) 981-3565

Директор по маркетингу и оперативному управлению ООО «РОДЕ и ШВАРЦ РУС»

О. Г. Позднякова